By James G. Lee, W6VAT
No matter how long you have been a ham, sooner of later you will be involved in at least one discussion of something called the Voltage Standing Wave Ratio, or VSWR, of an antenna system. There is a lot of good information available on VSWR as well as a lot misconceptions about what it is and what it signifies. Probably the most often misconception is that your VSWR should be as close to 1:1 as possible, otherwise ” you won’t get out very well.” A 1:1 VSWR implies a perfect match between all elements of the antenna system. The only problem is that it is possible to have a low VSWR and still have some very serious things wrong with your antenna system. Other misconceptions such as a high VSWR causing television interference, or other unwanted problems are often heard and can cause unnecessary worry. The concept of VSWR is easy to grasp and its importance in an antenna system does not require an engineering degree to understand.
WHY VSWR EXISTS
Early in electronics you learned that to get maximum power into a load required that the load impedance match the generator impedance. Any difference, or mismatching, of these impedance would not produce maximum power transfer. This is true of antennas and transmitters as well but, except for handie-talkies, most antennas are not connected directly to a transmitter. The antenna is usually located some distance from the transmitter and requires a feedline to transfer power between the two. If the feedline has no loss, and matches BOTH the transmitter output impedance AND the antenna input impedance, then – and only – then will maximum power be delivered to the antenna. In this case the VSWR will be 1:1 and the voltage and current will be constant over the whole length of the feedline. Any deviation from this situation will cause a “standing wave” of voltage and current to exist on the line.
There are a number of ways VSWR or its effects can be described and measured. Different terms such as reflection coefficient, return loss, reflected power, and transmitted power loss are but a few. They are not difficult concepts to understand, since in most instances they are different ways of saying the same thing. The proportion of incident (or forward) power which is reflected back toward the transmitter by a mismatched antenna…READ MORE
Product Description Brand new re-design! The NESDR Nano 2 are custom-made by NooElec for SDR applications, though they will still function as quality DVB-T receivers where signals permit. The enclosure was also re-designed to assist in ma... Read more
More